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Nonlinear elastic equation of state of solids

subjected to uniaxial homogeneous loading
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Applying the finite deformation theory to a solid, which possesses either cubic or isotropic
symmetry at stress-free natural state and is subsequently loaded homogeneously in
uniaxial direction, one obtains a stress (or strain) dependence of the Young’s modulus,
Poisson’s ratio, and a volume (or density) change, together with a nonlinear elastic relation
between stress and strain. These are all expressed in terms of the second and third order
elastic constants of the solid material. These expressions are illustrated with examples of
cubic silicon crystal, isotropic carbon steel, Pyrex glass, and polystyrene at the relaxed
state. C© 2000 Kluwer Academic Publishers

1. Introduction
Murnaghan [1, 2] developed the finite deformation the-
ory using the second and third order elastic constants
of isotropic and crystalline materials. One of his fun-
damental contributions is a derivation of a relation be-
tween the (Cauchy) stress and the thermodynamic (sec-
ond Piola-Kirchhoff) stress. In the finite deformation
theory the strength or the elastic constant of a mate-
rial at a stressed state varies with stress (strain) acting
on the material, which was theoretically well accounted
for, based on an interatomic or intermolecular force [3].
Birch [4, 5] extended Murnaghan’s work to a cubic ma-
terial and derived the well-known Birch’s equation of
state in geology, which relates a change in density (or
volume) to a (hydrostatic) pressure acting on the ma-
terials, using the parameters described in terms of the
second and third order elastic constants. The work on
the equation of state or the pressure-volume relation-
ship abounds in literature [6]. Murnaghan [2] derived
a nonlinear relation between the engineering stress re-
ferred to the unit area at the stress-free natural state and
the engineering strain referred to the stress-free state
for an initially isotropic material subjected to uniaxial
homogeneous loading. Seeger and Buck [7] extended
Murnaghan’s treatment to a cubic material. The non-
linear field theories of mechanics including the finite
deformation theory is well described in the article by
Truesdell and Noll [8].

Brugger [9] gave an elegant definition of higher or-
der elastic constants, and using his definition, Thurston
and Brugger [10] derived expressions for the ultrasonic
wavespeeds in stressed solid media in terms of the sec-
ond and third order elastic constants. Extensive data of
the second and third order elastic constants of numer-
ous solids of various symmetry groups were compiled
by Hearmon [11]. Some useful relations at finite defor-
mation are described by Thurston [12] and thermody-

namics of crystals in reference to the stress-free state is
given in detail in the book of Wallace [13]. Recently, the
first author [14] has generalized the thermodynamics of
elastic solids in reference to a state of arbitrary finite
deformation and derived the expressions for the effec-
tive Young’s modulus and Poisson’s ratio of a material
at a stressed state under isothermal and adiabatic condi-
tions in terms of the second order thermodynamic elas-
tic stiffness coefficients and three principals stresses
acting on the material.

To the authors’ knowledge, a nonlinear analytic rela-
tion between the Cauchy stress referred to the state of
finite deformation and the strain referred to the natural
state is not fully established in the case of uniaxial ho-
mogeneous loading, notwithstanding the innumerable
works done on the finite deformation of materials and
albeit a ubiquitous use of the tension test as a tool for
material testing and characterization. This, so called
the elastic equation of state that describes a behavior
of material in a uniaxial tension or compression test,
is analogous to the equation of state in high-pressure
physics, which relates hydrostatic pressure or spherical
Cauchy stress to volume change from the stress-free ini-
tial state. In this paper the authors derive not only the
nonlinear relation between the Cauchy stress and strain
but also the variation of the effective Young’s modulus
and Poisson’s ratio defined at the state of finite deforma-
tion with stress or strain. These can be anticipated from
the finite deformation theory but their analytical formu-
las have not yet been expressed to date. In addition, a
change in density/volume, which includes a contribu-
tion from higher-order strain/stress terms, is given in
this work. They are all expressed in terms of the sec-
ond and third order elastic constants of a material. We
provide a comprehensive treatment of finite deforma-
tion theory for the case of uniaxial loading especially
from the thermodynamic point of view and illustrate the
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nonlinear elastic behavior with four typical materials:
cubic silicon, polycrystalline carbon steel, amorphous
Pyrex glass, and polymeric polystyrene at the stress-
free natural state.

The amount of nonlinearity as compared with that
of linearity for ordinary materials is quite small be-
low the elastic limit of a material for strain less than
1%, but it is appreciable and can be detected from
precision ultrasonic wavespeed measurements [15, 16].
Most of the third-order elastic (TOE) constants of
materials reported in literature have been ultrasoni-
cally measured. Understanding anharmonic properties
of materials, such as the lattice vibration and the ther-
mal expansion coefficient of solids, can be facilitated
by the study of nonlinear elastic behavior and the TOE
constants. For strain larger than 1% the nonlinearity
term is significant and should be accounted for in the
meaningful solution of elasticity problems.

For example, when fine whiskers are deformed, very
large strains are present. Ruoff and his associates [17–
20] have analyzed this problem using finite elasticity
and found the conditions for macroscopic elastic insta-
bilities in tension and compression of perfect crystals
of diamond, silicon and germanium. The present paper
extends this work. The immediate neighborhood of the
interface layer of thin films that are epitaxially grown on
the substrate, especially that of heteroepitaxially grown
ones, may be subjected to strains as large as 10%, since
the interface atoms of the thin films conform to the sur-
face morphology of the substrate and are thus prohibited
from being plastically deformed. A recent study of Lee
et al. [21] on a polymethyl methacrylate (PMMA) film
deposited on a aluminum substrate by using picosecond
ultrasonics indicates that the longitudinal wavespeed in
the PMMA interface layer substantially increases from
that of a bulk specimen, suggesting that the PMMA in-
terface layer may be subjected to a large strain. Strains
substantially larger than 10% can be found in the deep
interior of planets including the earth and inside a dia-
mond anvil used in a laboratory, where a specimen may
be under pressures well exceeding its Young’s modu-
lus at the stress-free natural state [22]. Under these ex-
tremely high deformations, understanding the physical
behaviors of solids will not be possible without consid-
eration of the nonlinear behavior of materials.

2. Description of deformation states
and symbols

Consider a solid specimen of cubic or isotropic sym-
metry, which is in the stress-free natural state. The
Cartesian coordinates of a particle in the natural state
specimen is denoted by vectora. The specimen un-
dergoes an arbitrary finite homogeneous deformation
under uniaxial loading in the direction 3, which coin-
cides in the case of the cubic specimen with one of
the cubic axes, say, the [001] direction. We denote the
coordinates of the corresponding particle at finite de-
formation byX, which is said to be in an initial state.
The initial state is under arbitrary static stress and in-
cludes the natural state when the stress is zero. We take
the coordinate axes of both the natural statea and the
initial stateX to be parallel to the directions of material

symmetry, which coincide with principal stress direc-
tions. Finally, small disturbances caused either by an
isothermal small uniaxial loading or by an isentropi-
cally propagating waves are superposed on the initial
state. We denote a new corresponding coordinate of the
particle byx.

Displacements between the various states are ex-
pressed by

u = x− X, U = X − a. (1)

An engineering strainεi j and a Lagrangian strainηi j ,
both referred to the natural state, are respectively given
by

εi j = 1

2

(
∂Ui

∂aj
+ ∂U j

∂ai

)
, (2)

ηi j = 1

2

(
∂Xm

∂ai

∂Xm

∂aj
− δi j

)
= εi j + 1

2

∂Um

∂ai

∂Um

∂aj
.

(3)

We also define a strain referred to the initial state

ξi j = 1

2

(
∂xm

∂Xi

∂xm

∂X j
− δi j

)
= 1

2

(
∂ui

∂X j
+ ∂u j

∂Xi
+ ∂um

∂Xi

∂um

∂X j

)
. (4)

A principal stretchλi (i = 1, 2, 3) from the natural state
for the initial state of homogeneous deformation is
given by

∂Xi

∂aj
= δi j λi (i not summed). (5)

Note that for the uniaxial homogeneous loading in the
X3 direction,λ1= λ2 andη1= η11= η22= η2, where
ηi are the principal Lagrangian strains defined by
ηi = ηi j δi j (i fixed; i = 1, 2, 3). The principal stretches
λi are related to the principal Lagrangian strainsηi by

ηi = 1

2

(
λ2

i − 1
)
. (6)

Let U andF denote the internal and free energies per
unit mass, respectively. LetS andT stand for the en-
tropy and absolute temperature, respectively. We use
the superscripts/subscriptsS andT to represent adia-
batic and isothermal processes, respectively. The ther-
modynamic stressesτ a

i j andτ X
i j , referred respectively

to the natural and initial states, are defined as [8, 23]

τa
i j = ρa

(
∂U

∂ηi j

)
S

= ρa

(
∂F

∂ηi j

)
T

, (7)

τ X
i j = ρX

(
∂U

∂ξi j

)
S

= ρX

(
∂F

∂ξi j

)
T

. (8)

The thermodynamic stressτi j above is also called the
second Piola-Kirchhoff stress. A (Cauchy) stressσi j (X)
and aτ X

i j (X), both evaluated at the initial stateX, are
equal to each other. It was shown by Murnaghan [1]
that they are related to the thermodynamic stressτa

i j (X)
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evaluated at the initial stateX by

σi j (X) = τ X
i j (X) = ρX

ρa

∂Xi

∂ak

∂X j

∂al
τa

kl(X), (9)

which reduces in the case of the uniaxial homogenous
loading to

σi j (X) = 1

λ2
1λ3

λiλ j τ
a
i j (X) (i, j not summed). (10)

We also define the thermodynamic adiabatic and iso-
thermal elastic stiffness coefficients referred to the ini-
tial state as

CS
i jkl =

(
∂τ X

i j

∂ξkl

)
S

= ρX
∂2U (ξ, S)

∂ξi j ∂ξkl
,

(11)

CT
i jkl =

(
∂τ X

i j

∂ξkl

)
T

= ρX
∂2F(ξ, T)

∂ξi j ∂ξkl
.

The internal energy under adiabatic condition and the
free energy under isothermal condition can be expanded
in terms of the Taylor series about the natural state and
they are expressed as

ρaU (η, S) = ρaU (0, S)+
(

1

2

)
cS

i jkl ηi j ηkl

+
(

1

6

)
cS

i jklmnηi j ηklηmn+ · · · , (12)

ρaF(η, T) = ρaF(0, T)+
(

1

2

)
cT

i jkl ηi j ηkl

+
(

1

6

)
cT

i jklmnηi j ηklηmn+ · · · , (13)

where the adiabatic and isothermal second order elastic
(SOE) constants at the natural state are respectively
defined as

cS
i jkl =

[
ρa
∂2U (η, S)

∂ηi j ∂ηkl

]
a
=
(
∂τa

i j

∂ηkl

)
S;a
,

(14)

cT
i jkl =

[
ρa
∂2F(η, T)

∂ηi j ∂ηkl

]
a
=
(
∂τa

i j

∂ηkl

)
T ;a
,

and similarly, the adiabatic and isothermal third order
elastic (TOE) constants at the natural state are defined
by

cS
i jklmn =

[
ρa

∂3U (η, S)

∂ηi j ∂ηkl∂ηmn

]
a
=
(

∂2τa
i j

∂ηkl∂ηmn

)
S;a

(15)

cT
i jklmn =

[
ρa

∂3F(η, T)

∂ηi j ∂ηkl∂ηmn

]
a
=
(

∂2τa
i j

∂ηkl∂ηmn

)
T ;a
.

It suffices to say that the internal and free energies in
Equations 12 and 13 are truncated after the third or-
der term in Lagrangian strain. The effective thermo-
dynamic elastic stiffness coefficients determined from

precision ultrasonic measurements in the range below
the elastic limit of a material indicates that they vary lin-
early with the Lagrangian strain, which can be predicted
by truncating after the third order term. The fourth and
higher order terms contribute to a nonlinear behavior
of the elastic coefficients with strain. This nonlinearity
is extremely small, very difficult to detect, and usually
buried in experimental errors.

The thermodynamic elastic stiffness coefficients ap-
pearing in Equation 11, which are referred to and eval-
uated at the initial state, is related to the corresponding
those,cT or S

pqrs (X), referred to the natural state and eval-
uated at the initial state by [12, 13]

CT or S
i jkl (X) = ρX

ρa

∂Xi

∂ap

∂X j

∂aq

∂Xk

∂ar

∂Xl

∂as
cT or S

pqrs (X)

= 1

λ2
1λ3

λiλ jλkλl c
T or S
i jkl (X), (16)

(i, j, k, l not summed)

where theλ’s with subscripts are the principal stretches
defined in Equation 5 and

cT or S
pqrs (X) =

(
ρa

∂2F

∂ηpq∂ηrs

)
X

or

(
ρa

∂2U

∂ηpq∂ηrs

)
X

= cT orS
pqrs (a)+ cT or S

pqrsuν(a)ηuν + · · · . (17)

The SOE and TOE constants on the second line of Equa-
tion 17 are defined in Equations 14 and 15 respectively.

It is henceforth understood that when the superscripts
T andSdo not appear in the elastic coefficients, such as
ci jkl , ci jklmn,Ci jkl , the Young’s modulus and Poisson’s
ratio, these elastic coefficients are referred to either
isothermal or adiabatic conditions. In most cases in this
work the strains are defined with reference to stress-free
natural state. So, when there appears no superscript as
in the thermodynamic stressτi j , it is also understood
that τi j = τa

i j . It follows from Equations 7, 10, 12 and
13 that for the homogeneous uniaxial loading in theX3
direction

σi j (X) = 1

λ2
1λ3

λiλ j

(
ci jkl ηkl + 1

2
ci jklmnηklηmn+ · · ·

)
(i, j not summed). (18)

Since the strains, the thermodynamic and Cauchy st-
resses are symmetric with respect to the subscript in-
dices, it is convenient to introduce the Voigt notation:
11∼ 1, 22∼ 2, 33∼ 3, 23∼ 4, 13∼ 5, 12∼ 6. Using
the Voigt notation, a material of cubic symmetry has
three SOE constants:

c11 = c22 = c33, c12 = c13 = c23, c44 = c55 = c66,

(19)
and six TOE constants (432,4̄3 m, m3m groups):

c111= c222= c333, c144= c255= c366, c123, c456,

c112= c223= c133= c113= c122= c233, (20)

c155= c244= c344= c166= c266= c355.
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For an isotropic material there are two SOE constants:

c12 = λ, c44 = µ, c11 = λ+ 2µ, (21)

and three TOE constants:

c123= ν1, c144= ν2, c456= ν3,

c112= ν1+ 2ν2, c155= ν2+ 2ν3, (22)

c111= ν1+ 6ν2+ 8ν3,

whereλ andµ are called the second order Lam´e con-
stants, andν1, ν2, andν3 are called the third order Lam´e
constants.

For notational simplicity and convenience for the
equations we deal with in the following sections, let
us first define dimensionless parameters,ν0, h1, h2,
h3, g1, g2, b1, andb2, as

ν0 ≡ c12

c11+ c12
, (23)

h1 ≡ c112

2c12
, h2 ≡ c112+ c123

c11+ c12
= ν0(c112+ c123)

c12
,

h3 ≡ c111+ 3c112

2(c11+ c12)
, (24)

g1 ≡ h1− h2+ ν0h3,

g2 ≡ h2
2− h1h2+ ν0h3(2h1− 3h2)+ 2ν2

0h2
3, (25)

b1 ≡ 2(1+ ν0+ g1),
(26)

b2 ≡ 4ν0+ 4ν2
0 + 6ν0g1+ 4g1+ 3g2,

and next define strength parameters,E0, e1, ande2,, as

E0 ≡ c11− 2ν0c12, (27)

e1 ≡ E0(1+ 2ν0)+ c12
(
ν−1

0 h3− 3h1− 6ν0h1

+ 3ν0h2− 2ν2
0h3

)
,

e2 ≡ E0
(
2ν0+ 4ν2

0 + 2ν0g1− 0.5
)

(28)

+ c12
[(
ν−1

0 + 2
)(

h3− 3ν0h1− 6ν2
0h1

+ 3ν2
0h2− 2ν3

0h3
)− 2ν0(2h1g1− h2g1+ g2)

]
.

Note thatE0 in Equation 27 andν0 in Equation 23
are the Young’s modulus and Poisson’s ratio of a cubic
material at the stress-free natural state.

A cubic crystal loaded in the [001] direction tends to-
wards that of tetratgonal symmetry and may be termed
as having a tetratropic symmetry, which has six ther-
modynamic elastic stiffness coefficients of the second
order defined in Equation 11. They are written as

C11 = C22, C33, C12, C13 = C23,

C44 = C55, C66. (29)

Formulas for phase and group velocities in terms of
Cµν and stresses acting on the medium are described in
detail for the symmetry planes of stressed anisotropic
solids including a tetratropic medium by Kimet al. [24]

3. Poisson’s ratio and volume change
In the aforementioned homogenous loading in theX3
direction coinciding with the [001] cubic axis, the only
nonzero stress component isσ33= σ3 6= 0. The nonzero
Lagrangian strains are three principal strains, which are
ηi j = ηi δi j with η1= η2. Using Equation 18 with the
identity relations given in Equations 19 and 20, one
obtains for the stressσ1= σ11= 0

σ1 = 1

λ3

(
c11klηkδkl + 1

2
c11klmnηkδklηmδmn+ · · ·

)
= 1

λ3

[
(c11+ c12)η1+ c12η3+ 1

2

{
(c111+ 3c112)η

2
1

+ 2(c112+ c123)η1η3+ c112η
2
3

}+ · · · ] = 0.

(30)
Let

k ≡ −η1

η3
, i.e., η1 ≡ −kη3. (31)

Substitutingη1 by−kη3 into Equation 30 and solving
the resulting quadratic equation ink in terms ofη3 yield

k = 1+ h2η3

2h3η3

[
1−

{
1− 4ν0h3η3(1+ h1η3)

(1+ h2η3)2

}1/2
]
,

(32)

whereν0, the Poisson’s ratio at the stress-free state, and
h1, h2, andh3 are given by Equations 23 and 24, respec-
tively. We have chosenk> 0 for a normal solid. The
solution with a positive square root fork corresponds
to a negativek and is discarded in Equation 32.

Using the binomial theorem, Equation 32 is expanded
in powers ofη3 to yield after an involved algebra

k = ν0
(
1+ g1η3+ g2η

2
3 + g3η

3
3 + · · ·

)
, (33)

whereg1 andg2 are given in Equation 25 and

g3 ≡ h2
2(h1− h2)+ ν0h3

(
h2

1− 6h1h2+ 6h2
2

)
+ 2ν2

0h2
3(3h1− 5h2). (34)

The effective Poisson’s ratio at the initial stateX is
independent of direction in theX1X2 plane normal to
the loading direction and we denote it byν3, which is
defined by

ν3 ≡ −dλ1/λ1

dλ3/λ3
= −1+ 2η3

1+ 2η1

dη1

dη3
. (35)

−dη1

dη3
= d[k(η3)η3]

dη3
= ν0

(
1+ 2g1η3+ 3g2η

2
3 + · · ·

)
,

(36)
which is substituted into Equation 35 to yield

ν3(X) = ν0
(
1+ b1η3+ b2η

2
3 + · · ·

)
, (37)

whereb1 and b2 are expressed in Equation 26. The
effective Poisson’s ratio is a ratio of an infinitesimal
transverse strain to an infinitesimal longitudinal strain
of a material referred to the very strained state. Hence,
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when we say simply the Poisson’s ratio, it actually
means the effective Poisson’s ratio. An engineering
strainε3 is related to a Lagrangian strainη3 via Equa-
tion 3 by

η3 = ε3

(
1+ 1

2
ε3

)
. (38)

The Poisson’s ratio can be now expressed in terms of
engineering strain as

ν3 = ν0

[
1+ b1ε3+

(
1

2
b1+ b2

)
ε2

3 + · · ·
]
. (39)

The engineering Poisson’s ratioνE
3 is defined as

νE
3 ≡ −

ε1

ε3
. (40)

In terms of the engineering strain and engineering
Poisson’s ratio,k in Equation 31 is expressed as

k ≡ −η1

η3
= −ε1(1+ ε1/2)

ε3(1+ ε3/2)
= νE

3

(
1− νE

3 ε3
/

2
)

(1+ ε3/2)
,

(41)

which in combination with Equations 33 and 38 yields
a quadratic equation inνE

3 . Solving forνE
3 in terms ofε3

and opting forνE
3 > 0 for a normal solid, one expresses a

strain dependence of the engineering Poisson’s ratio as

νE
3 = ν0

[
1+ 1

2
(1+ ν0+ 2g1)ε3

+ 1

2

(
ν0+ ν2

0 + 2ν0g1+ 2g1+ 2g2
)
ε2

3 + · · ·
]
.

(42)

Note that in a usual tension or compression testing
of materials, what are conventionally measured are an
engineering strain and an applied force, and the engi-
neering Poisson’s ratio, which is treated as a constant.
Equations 39 and 42 indicate, however, that both the
(effective) Poisson’s ratio and engineering Poisson’s
ratio are a function of strain. These strain dependencies
are amply demonstrated by precision ultrasonic mea-
surements of elastic moduli [15, 16]. What has been
so far unknown are the explicit analytical expressions,
such as Equations 37, 39 and 42.

It may be interesting to see if the Poisson’s ratioν3(X)
given in Equations 87 and 88 of Ref. [14], where it is
expressed in terms of the second order thermodynamic
elastic stiffness coefficients given by Equation 11 and
three principal stresses, will lead to the identical results
for strain dependence. Applying Equation 87 of Ref.
[14] to the case of uniaxial homogenous loading of
σ1= σ2= 0, one obtains, with the aid of Equations 16,
17, and 29, an expression

ν3(X) ≡ −dλ1/λ1

dλ3/λ3
= C13

C11+ C12
= λ2

3

λ2
1

× c12+ (c112+ c123)η1+ c112η3

c11+ c12+ (c111+ 3c112)η1+ (c112+ c123)η3
,

(43)

which yields the following differential equation involv-
ing η1 andη3:

−dη1

dη3
= ν0+ h2η1+ 2h1ν0η3

1+ 2h3η1+ h2h3
. (44)

The solution of the above differential equation leads to
k≡−η1/η3 being identical to Equation 32.

A change in cross-sectional area,AX/Aa, is specified
by λ2

1, which can be expressed as

λ2
1 = AX/Aa = 1+ 2η1 = 1− 2kη3

= 1− 2ν0η3
(
1+ g1η3+ g2η

2
3 + · · ·

)
. (45)

A change in volumeV or the densityρ from the natural
state to the initial state is given by

ρa

ρX
= VX

Va
= λ2

1λ3 = 1+ (1− 2ν0)η3

− (0.5+ 2ν0+ 2ν0g1)η2
3 + · · ·

= 1+ (1− 2ν0)ε3− ν0(3+ 2g1)ε2
3 + · · · . (46)

4. Nonlinear elastic equation of state
and Young’s modulus

It follows from Equations 18, 19 and 20 that the only
nonzero stress componentσ3 is expressed as

σ3 = λ3

λ2
1

τ33

= λ3

λ2
1

(
c33i j ηi δi j + 1

2
c33i jkl ηi δi j ηkδkl + · · ·

)

= (1+ 2η3)1/2

1+ 2η1

[
2c12η1+ c11η3+

{
(c112+ c123)η

2
1

+ 2c112η1η3+ 1

2
c111η

2
3

}
+ · · ·

]
. (47)

Substitutingη1 by −kη3, wherek is given by Equa-
tion 32, and expanding the resulting equation in power
series ofη3, one obtains after some lengthy algebra

σ3 = η3
(
E0+ e1η3+ e2η

2
3 + · · ·

)
, (48)

where E0, the Young’s modulus at the relaxed state
is given in Equation 27, ande1 ande2 are defined by
Equation 28. The (Cauchy) stress at the initial state,σ3,
is related to an engineering strain via Equation 38 by

σ3 = ε3

[
E0 +

(
1

2
E0 + e1

)
ε3 + (e1 + e2)ε2

3 + · · ·
]
.

(49)

The first Piola-Kirchhoff stress referred to the original
area at the natural state is known as an engineering
stressσ E

3 in a conventional tension testing of materials.
Using Equations 45 and 38, the engineering stress can
be expressed in terms of engineering strain as
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σ E
3 = λ2

1σ3 = ε3

[
E0+

(
1

2
E0− 2ν0E0+ e1

)
ε3

− (2ν0E0+ 2ν0g1E0− e1+ 2ν0e1− e2)ε2
3 + · · ·

]
.

(50)

Note that in the conventional tension (or compression)
testing of materials,σ E

3 versusε3 are usually plotted
with a linear dependence between them. However, the
above equation implies that the relation is basically non-
linear.

With the knowledge of Equation 48, the (effective)
Young’s modulusE3 at the initial stateX can be written
as

E3(X) ≡ dσ3

dλ3/λ3
= λ3

dσ3

dη3

dη3

dλ3

= λ2
3

(
E0+ 2e1η3+ 3e2η

2
3 + · · ·

)
= E0+ 2(E0+ e1)η3+ (4e1+ 3e2)η2

3 + · · · ,
(51)

which is expressed in terms of engineering strain as

E3 = E0+ 2(E0+ e1)ε3+ (E0+ 5e1+ 3e2)ε2
3 + · · · .

(52)
Equation 50 readily yields an expression for the engi-
neering Young’s modulusEE

3 defined asσ E
3 /ε3:

EE
3 ≡

σ E
3

ε3
= E0+

(
1

2
E0− 2ν0E0+ e1

)
ε3

− (2ν0E0+ 2νog1E0− e1+ 2ν0e1− e2)ε2
3 + · · · .

(53)

The engineering Young’s modulus can be construed as
a kind of average of the Young’ moduli between the
natural and initial states. Although its physical mean-
ing is not so clear-cut, it is the most easily and conve-
niently determined modulus in a conventional testing of
materials. The linear infinitesimal elastic theory treats
it as a constant, while the finite deformation theory
predicts a strain dependence of the Young’s modulus.
Equations 48–53 are all considered as nonlinear elastic
equations of state of solids, which describe a nonlin-
ear elastic relation between the stress and the strain of
materials.

Referring to Equation 89 of Ref. [14], one writes
the (effective) Young’s modulus in the uniaxial loading
along theX3 direction as

E3(X) = C33+ σ3− 2ν3(C13− σ3), (54)

whereC33 andC13 are the thermodynamic elastic stiff-
ness coefficients of the second order defined in Equa-
tion 11 and the (effective) Poisson’s ratioν3 is given
by Equation 39. Expressing theC33 andC13 in terms
of the second and third order elastic constants via
Equations 16 and 17 and substituting the result, Equa-
tions 37 and 48 into Equation 54, one can prove after a
lengthy involved algebra that Equation 54 is identical
to Equation 51, providing consistency to the results we
obtained.

5. Stress dependence of strain, Young’s
modulus, Poisson’s ratio and volume
change

So far, we have expressed various elastic moduli and the
Poisson’s ratios as a function of strain. In this section
we will express them as an explicit function of stress. To
obtain the stress dependence of the Young’s modulus
and Poisson’s ratio, Equations 48–50 are inverted to
express a strain as a function of stress. Expressing the
results in powers ofσ3/E0 or σ E

3 /E0, one obtains

η3 = σ3

E0

(
1− e1

E0

σ3

E0
+
(

2e2
1

E2
0

− e2

E0

)(
σ3

E0

)2

· · ·
)
,

(55)

ε3 = σ3

E0

[
1−

(
1

2
+ e1

E0

)
σ3

E0
+
(

1

2
+ e1

E0
+ 2

e2
1

E2
0

− e2

E0

)(
σ3

E0

)2

· · ·
]
, (56)

ε3 = σ E
3

E0

[
1+

(
2ν0− 1

2
− e1

E0

)
σ E

3

E0

+
(

1

2
− 2ν0+ 2ν0g1+ 8ν2

0

+ e1

E0
− 6ν0

e1

E0
+ 2e2

1

E2
0

− e2

E0

)(
σ E

3

E0

)2

· · ·
]
.

(57)

Substituting Equations 56 and 57 into Equations 39,
42, 46, 52, and 53, the variations of the Poisson’s ratio,
Young’s modulus, and a volume change with stress can
be obtained. We express the effective Poisson’s ratio
and effective Young’s modulus as a function of Cauchy
stress, the engineering Poisson’s ratio and engineering
Young’s modulus in terms of engineering stress, and
a volume change using both Cauchy and engineering
stresses. They are written as

ν3 = ν0

[
1+ b1

σ3

E0
+
(

b2− b1e1

E0

)(
σ3

E0

)2

+ · · ·
]
,

(58)

E3 = E0+ 2(E0+ e1)
σ3

E0

+
(

2e1− 2
e2

1

E0
+ 3e2

)(
σ3

E0

)2

+ · · · , (59)

VX

Va
= ρa

ρX
= 1+ (1− 2ν0)

σ3

E0

−
(

1

2
+ 2ν0+ 2ν0g1+ e1

E0
− 2ν0e1

E0

)
×
(
σ3

E0

)2

+ · · · , (60)

= 1+ (1− 2ν0)
σ E

3

E0
−
(

1

2
+ 4ν2

0 + 2ν0g1+ e1

E0

− 2ν0e1

E0

)(
σ E

3

E0

)2

+ · · ·
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νE
3 = ν0

[
1+ 1

2
(1+ ν0+ 2g1)

σ E
3

E0

+ 1

2

(
5

2
ν0+ 3ν2

0 −
1

2
+ g1+ 6ν0g1+ 2g2

− e1

E0
− ν0e1

E0
− 2g1e1

E0

)(
σ E

3

E0

)2

· · ·
]
, (61)

EE
3 = E0+

(
1

2
E0− 2ν0E0+ e1

)
σ E

3

E0

−
(

1

4
E0+ 4ν2

0 E0+ 2ν0g1E0− 2ν0e1

+ e2
1

E0
− e2

)(
σ E

3

E0

)2

· · · . (62)

Equations 57 and 62, in which a stressσ E
3 is defined

with respect to unit area at the stress-free state, are
derived in Refs. 2 and 7 without the last term in both
equations.

6. Illustrations of nonlinear elastic behavior
It is well known in ultrasonics that sound speeds vary
with applied stresses. From measurements of the vari-
ation of the sound speeds with uniaxial stress and hy-
drostatic pressures, one can determine the SOE and
TOE constants. A method of determining the (effective)
Young’s modulus and Poisson’s ratio at an arbitrarily
stressed initial state from the ultrasonic acoustoelastic
measurements has been described by the authors [25].
Variations of the Young’s modulus and Poisson’s ratio
with stress or strain have been observed to be linear in
most materials in the stress range below the elastic limit.
The square terms in stress and strain, which are shown
in Equations 39, 52, 58 and 59, are so small that they are
difficult to detect experimentally. These equations are
derived on the assumption that the internal and free en-
ergies truncated after the third order term in Lagrangian
strain (see Equations 12 and 13) correctly describe the
material behavior. Even though the assumption fits the
material behavior very well, it is not strictly true, and
the internal and free energies should in principle in-
clude the fourth and higher order terms in Lagrangian
strain. In such a case the cubic terms in strain (or stress)
in the expressions of the constitutive elastic equations
of state, such as Equations 49, 50, 56, and 57, and the
square terms in strain (or stress) in the expressions of
the Young’s modulus and Poisson’s ratio, such as Equa-
tions 39, 42, 52, 53, 58, 59, 61, and 62, will be affected
by the inclusion of the fourth order elastic (FOE) con-
stants. The FOE constants of some materials can be
theoretically estimated (see Ref. [11]). However, they
cannot be reliably determined by the present status of
art in experiment. In the following examples taken with
cubic silicon and isotropic carbon steel, Pyrex glass, and
polystyrene, we neglect these cubic and square terms.
They are retained in the equations given in Sections
3–5, as they represent a behavior of higher order non-
linearity in case that the FOE constants are nearly zero
and an observed elastic behavior of materials exhibits
such a higher order nonlinearity.

The SOE and TOE constants of cubic silicon are
taken from the measurement by Hall [26], who re-
ported in units of GPac11= 165.64, c12= 63.94,
c44= 79.51, c111=−795, c112=−445, c123=−75,
c144= 15, c155=−310,c456=−86. Using these con-
stants, we calculate the relevant parameters in Equa-
tions 23–28 to express the nonlinear elastic equation
of state and write the (effective) Young’s modulus,
Poisson’s ratio, and a volume change as a function of
Cauchy stress and engineering strain.

σ3 = ε3(130.02+ 166.78ε3+ · · ·), (63)

E3 = 130.02+ 3.565σ3+ · · · = 130.02

+ 463.59ε3+ · · · , (64)

ν3 = 0.2785(1− 0.01889σ3+ · · ·)
= 0.2785(1− 2.457ε3+ · · ·), (65)

VX

Va
= ρa

ρX
= 1+0.003407σ3+4.382× 10−7σ 2

3 + · · ·

= 1+ 0.4430ε3+ 0.5608ε2
3 + · · · . (66)

Next, we turn to a typical structural isotropic ma-
terial, high-strength carbon steel Hecla 37 (0.4% C.
0.3% Si, 0.8% Mn), the SOE and TOE Lam´e constants
of which were reported in units of GPa by Smithet al.
[27] asλ= 111,µ= 82.1, ν1=−358,ν2=−282, and
ν3=−177. We choose to express a nonlinear elastic
equation of state that relates an engineering stress to an
engineering strain and to list other quantities as a func-
tion of engineering strain, as they are typically mea-
sured in a conventional tension/compression testing.
They are written as

σ E
3 = ε3(211.39− 790.2ε3+ · · ·), (67)

where the term inside the parenthesis is equal to the
engineering Young’s modulusEE

3 , and

νE
3 = 0.2874(1− 2.514ε3+ · · ·), (68)

VX

Va
= ρa

ρX
= 1+ 0.42517ε3+ 0.9529ε2

3 + · · · . (69)

Now, we choose Pyrex glass, an amorphous material
to see its nonlinear elastic behavior, whose SOE and
TOE Lamé constants were reported [16] in units of
GPa asλ= 13.53,µ= 27.5, ν1= 264ν2=−118, and
ν3= 105. Pyrex glass has an anomalous behavior in the
TOE constants in the sense thatν1 andν3 are positive,
in lieu of of being negative just as those of other typical
isotropic matertials are. This behavior is phenomeno-
logically associated with the low thermal expansion co-
efficient of Pyrex glass. A similar behavior is found in
fused quartz [28], which has a very low thermal expan-
sion coefficient.

σ3 = ε3(64.07+ 323.0ε3 · · ·), (70)

σ E
3 = ε3(64.07+ 301.9ε3 · · ·), (71)

E3 = 64.07+ 11.08σ3 · · · = 64.07+ 710.2ε3 · · · ,
(72)

3203



ν3 = 0.1649(1− 0.02736σ3 · · ·)
= 0.1649(1− 1.753ε3 · · ·), (73)

VX

Va
= 1+ 0.01046σ3+ 7.798× 10−4σ 2

3 · · ·

= 1+ 0.6702ε3+ 0.1785ε2
3 · · · (74)

Equations 70–73 indicate that Pyrex glass, a brittle
material of medium strength, has a strong nonlinear
contribution to its elastic equation of state and this
kind of strong dependence of the Young’s modulus and
Poisson’s ratio on stress (or strain) may be typical of a
behavior of glass that possesses a low thermal expan-
sion coefficient.

Finally, we take an example of a typical polymeric
material, polystyrene, the SOE and TOE Lam´e con-
stants of which were reported by Hughes and Kelly [16]
to be in units of GPaλ= 2.889,µ= 1.381,ν1=−21.2,
ν2=−8.3, andν3=−2.5. An engineering strain, the
engineering Young’s modulus, engineering Poisson’s
ratio, and a volume change, are expressed in terms
of engineering stress. The nonlinear elastic equations
of state, the Young’s modulus, Poisson’s ratio, and a
change in volume/density are written as

ε3 = σ E
3

(
0.2705+ 0.2759σ E

3 · · ·
)
, (75)

where the quantity inside the parenthesis is equal to a
reciprocal of the enigneering Young’s modulusEE

3 ,

νE
3 = 0.3383

(
1− 0.8150σ E

3 · · ·
)
, (76)

VX

Va
= 1+ 0.08750σ E

3 + 0.1973
(
σ E

3

)2 · · · . (77)

Equations 75 and 76 indicate that polystyrene has a rela-
tively high nonlinear contribution to the elastic equation
of state. A strong dependence of the Young’s modulus
and Poisson’s ratio on stress (or strain) is shown by
them. This kind of behavior might have been expected
for low-strength materials such as polymers. However,
a volume change is quite small even at large strain
ε3= 0.1.

Note that in the above Equations 63–77 the highest
order terms of strain and stress, which are absent in the
conventional linear theory, are due to the contributions
of the third order terms in the internal and free energies
given in Equations 12 and 13.

7. Discussion
A conventional tension/compression testing of mate-
rials lacks in precision measurements of strain and
usually fails to show a nonlinear behavior between
stress and strain, which is described in Sections 4 and 5.
In an ordinary tension/compression test, the calculation
of the Young’s modulus involves the differentiation of
stress with respect to strain, which again involves the
differentiation of displacement with respect to gauge di-
mension, and therefore, a determination of the Young’s
modulus accurate enough to exhibit a strain dependence
requires very precise measurements of the applied force

and dimensional changes of a specimen. Better accu-
racy in the (effective) Young’s modulus and often in
the Poisson’s ratio is usually obtained through accu-
rate measurements of ultrasonic wavespeeds of vari-
ous modes propagating along various directions in the
specimen, as described in Ref. [25]. Since the preci-
sion ultrasonic measurements, which determine sound
speeds better than one part in 104, exhibit a nonlinear
behavior between stress and strain, it should be possible
to see the nonlinear behavior in a carefully controlled
tension/compression testing which provides precision
measurements of an applied load and dimensions of
a specimen. Indeed, a nonlinear stress-strain relation
and a strain dependence of the Young’s modulus were
demonstrated in a tension testing of various whiskers
[29, 30]. They can be used to determine some of the
TOE constants of materials.

The Young’s modulus and Poisson’s ratio obtained
from the tension/compression test are isothermal val-
ues, while those calculated from the ultrasonic mea-
surements via Equations 43 and 54 are adiabatic ones.
Denoting the isothermal and adiabatic values by super-
scriptsT andS, respectively, they are related by [14]

ET
3 =

ES
3

1+ α
σ
3α

τ
3 ES

3 T

ρXCσ
(1+ rt )

= ES
3

1+ ασ3 λES
3

,

(79)

ES
3 =

ET
3

1− ασ3 λET
3

,

νS
3 =

νT
3 + ασ1 λET

3

1− ασ3 λET
3

, (80)

whereλ denotes

λ ≡ Tατ3(1+ rt )

ρXCσ
, (81)

and the dimensionless parameterrt is expressed as

rt =
(
ατ1

ατ3

)
QT

33σ1+
(
ατ1

ατ3

)
QT

33σ2+
(
2QT

13− QT
33

)
σ3.

(82)

In Equations 79–82,ασi and ατi are the thermal
expansion coefficients at constant Cauchy stress and
constant thermodynamic stress, respectively,Cσ is the
specific heat at constant Cauchy stress, andQT

i j are
the effective isothermal elastic compliance coefficients.
For detail of these thermodynamic relations, refer to
Ref. [14]. The termsασµλET or S

3 (µ= 1, 2, 3) in Equa-
tions 79 and 80 depend on stress. However, they are
much smaller than unity and may be replaced by
the constant values evaluated at the stress-free natu-
ral state. For conversion between the thermodynamic
elastic stiffness coefficientsCT

µν andCS
µν , between the

SOE constantscT
µν andcS

µν , between the TOE constants
cT
λµν andcS

λµν (λ,µ, ν= 1, 2 . . .6), refer to Refs. [14]
and [9].

Amorphous and nontextured polycrystalline materi-
als possess isotropic symmetry at the stress-free natural
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state and a majority of crystals observed in nature be-
long to cubic symmetry at the relaxed state. It is well
known that an isotropic material at the stress-free natu-
ral state behaves as a transversely isotropic material at
the stressed state under uniaxial loading, say in theX3
direction. Its effective elastic moduli are characterized
by five second-order thermodynamic elastic stiffness
coefficientsC11=C22,C33,C12,C13=C23,C44=C55,
C66= (C11−C12)/2, which are related to the two SOE
and three TOE Lam´e constants via Equations 16, 17, 21
and 22. Similarly as aforementioned, a cubic material
at the stress-free natural state behaves as a tetratropic
material at the stressed state under uniaxial loading in
the X3 direction. Its effective elastic moduli are char-
acterized by six second-order thermodynamic elastic
stiffness coefficients given by Equation 29, which are
related to the three SOE and six TOE constants via
Equations 16, 17, 19 and 20. Under triaxial stresses,
an isotropic material at the natural state behaves as an
orthotropic material with nine second-order thermody-
namic elastic stiffness coefficients and so does a cubic
material at the natural state when its cubic axes coincide
with three principal stress directions. A similar proce-
dure could in principle be extended to obtain nonlinear
elastic relations for an orthotropic material. However,
because of the increasing number of elastic constants
involved and the presence of cross-coupling terms be-
tween principal stresses, one would expect very com-
plicated nonlinear relations and it is hard to imagine
that one might gain further meaningful physical insight
from these relations.

8. Conclusion
Nonlinear elastic equations of states of solids govern-
ing the behavior between stress and strain under uni-
axial homogeneous loading have been derived for cu-
bic and isotropic solids. A strain/stress dependence
of the Young’s modulus and Poisson’s ratio, and a
change in volume/density is also expressed. These re-
lations are described in terms of the SOE and TOE con-
stants of solids. The nonlinear behaviors are illustrated
with examples of cubic silicon, high-strength carbon
steel, medium-strength Pyrex glass, and low-strength
polystyrene.
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